EX 13.3 (Question: 1)

EX 13.3 (Question: 1)
The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality. Find the median, mean and mode of the data and compare them.
Monthly consumption (in units)
Number of consumers
65 - 85
4
85 - 105
5
105 - 125
13
125 - 145
20
145 - 165
14
165 - 185
8
185 - 205
4

Given:Let ℎ=20,𝑎=135From the table:
∑𝑓_𝑖=68
∑𝑓_𝑖 𝑢_𝑖=7Mean
𝑥 ‾=135+(7/68)×20
=135+140/68
=135+2.05
=137.05Mean, 𝒙 ‾=𝒂+((∑1▒  𝒇_𝒊 𝒖_𝒊)/(∑1▒  𝒇_𝒊 ))×𝒉
Mode, =𝒍+[(𝒇_𝟏−𝒇_𝟎)/(𝟐𝒇_𝟏−𝒇_𝟎−𝒇_𝟐 )]×𝒉
Median, =𝒍+[(𝒏/𝟐−𝒄𝒇)/𝒇]×𝒉
Mode
From table:
Modal class =125−145
𝑙=125,𝑓_1=20,𝑓_0=13,𝑓_2=14
Mode =125+((20−13)/(2×20−13−14))×20
=125+(7/(40−27))×20
=125+(7/13)×20
=125+140/13
=125+10.76
=135.76 Median
Given 𝑛=68⇒𝑛/2=34From table:
Cumulative frequency just > 34 is 42 (class: 125-145)
So, median class =125−145
𝑙=125,𝑓=20,𝑐𝑓=22
" Median "=125+((34−22)/20)×20
=125+12/20×20
=125+12
=137So, Mean =137.05, Mode =135.76, Median = 137
Mean > Median > Mode

Scroll to Top